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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2403

THE INDICIAL LIFT AND PITCHING MOMENT FOR A SINKING
OR PITCHING TWO-DIMENSIONAL WING FLYING
AT SUBSONIC OR SUPERSONIC SPEEDS

By Harvard Lomax, Max. A. Heaslet,
and Loma Sluder

SUMMARY

Solutions are presented for the lift and pitching moment on a two—
dimensional flat plate undergoing a step variation in pitch or vertical
displacement. Resulting indicial 1ift and pitching-moment curves are
given for free—stream Mach numbers equal to 0, 0.8, 1.0, 1.2, and 2.0.
Considerable use is made of the analogy between the boundary wvalues for
a two—dimensional wing in unsteady motion and those for a three—
dimensional, lifting surface in steady motion. The incompressible,
unsteady case, for which Wagner's classical treatment already exists, is
shown to be analogous to a problem in slender wing theory.

INTRODUCTION

The response in lift for a two-dimensional airfoil that starts sud-—
denly from rest and moves forward at a constant velocity in an incom—
pressible fluid was studied originally by Wagner (reference 1). It is
well known that such a response, referred to as the indicial 1lift due to
angle of attack, can, by suitable superposition, be used to find the 1lift
on a wing undergoing an arbitrary variation of angle of attack with time.
In particular, Garrick (reference 2) showed that Wagner's results were
consistent with those obtained by Theodorsen (reference 3) for a harmoni-
cally oscillating wing.

Subsequently, aerodynamicists have become interested in the effect
of compressibility on the unsteady motion of a wing. Most, of this inter-
est, however, has been focused on the problem of wing flutter which
involves harmonic motion. Hence, the analysis of the compressibility
effects has usually commenced with the immediate assumption that the
motion is harmonic. Such studies which, in general, can be considered as
an extension of the work of Theodorsen, have been particularly successful
in the case of supersomic flow (e.g., reference 4). In subsonic studies,
however, these methods have proven to be somewhat cumbersome.
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The purpose of this report is to calculate the effects of compress—
ibility on the indicial responses. At supersonic speeds (e.g., refer—
ence 5) some of these indicial curves have been obtained. The material
Presented here, however, will provide a complete set of indicial
responses (cza, cmm’, czq', cmq') for supersonic speeds and, what is

more important, will also provide these same responses for subsonic
Speeds; the particular case of a free—stream Mach number equal to 0.8
having been chosen for detailed conmsideration. Results are also pre—
sented for a wing traveling at the speed of sound.

The analysis required to formulate these indicial curves is based
on the two-dimensional wave equation having boundary conditions speci-
fied over the plane in which the wing moves. The particular boundary-—
value problems involved are, in fact, completely analogous to certain
three—dimensional, steady—state, supersonic, lifting—surface problems.
The latter field has received much attention during the last few years
and analytical techniques have been developed by means of which many
supersonic lifting—surface problems have been solved. Because of the
analogy, these techniques can be applied to the field of two—dimensional,
unsteady flow. The analogy even extends to the point where a two—
dimensional wing moving unsteadily in an incompressible field has for
its analog a three—dimensionsl, lifting surface moving steadily in a
compressible medium at the speed of sound. By means of this correspond-
ence, Wagner'®s classical result can be rederived as a problenm in slender—
wing theory.

The part of the analysis pertaining to the response of an unsteady
wing traveling at a subsonic speed is lengthy and somewhat tedious
regardless of the method of approach, With the use of indicial functions,
however, the calculations are reasonably straightforward, especiglly for
Mach numbers around 0.8 to 1.0. Further, the use of indicial functions
sheds considerable light on the manner in which Mach number variations
affect the section aerodynamic characteristics.

LIST OF IMPORTANT SYMBOLS

ag velocity of sound in the free stream
c chord of wing
c section 1lift coefficient <
m
Cm section moment coefficient <’ =
q,C
c, indicial section 1ift coefficient due to angle—of-attack

o change (without pitching)
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u,v,w

Au

indicial section lift coefficient due to pitching on a ﬁing
rotating about its leading edge

indicial section pitching-moment coefficient due to angle—of—
attack change (without pitching) measured about the leading
edge and considered positive when the trailing edge is.
forced down

indicial section pitching—moment coefficient due to pitching
measured about the leading edge for a wing rotating about
its leading edge; considered positive when the trailing
edge is forced down

indicial section pitching-moment coefficient due to pitching
measured about the leading edge for a wing rotating about
its 3/b-chord point

section 1ift

section moment

flight Mach number

static pressure

do
Vb
a . 1 2
ypamic pressure | EpOVb .

- =

oblique coordinates <r = N =
J2 J2

s(14M,) — cof2
1M

o}
time
aot'
agt! %
c ¢

pertﬁrbation velocity components in the x,y,z directionms,
respectively

YWy — U3
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Vo flight velocity
X,¥,2 Cartesian coordinates
X

Xq -
o angle of attack in radians

2
p | 10,2
r circulation strength
5(t?) Dirac ® funbtion, normalized with respect to t', thus

©0
5(tt)dtt =1
- 00
lim

B(t?
5(0) £1mp ()
6 angle of pitch in radians
Po density in undisturbed air
® perturbation velocity potential

Subscripts
u upper side of z=0 plane
1 lower gide of 2z=0 plane
1 variable of integration
B part of a response multiplied by a & function
METHOD

A basic linearized form of the partial differential equation which
governs the flow field surrounding a thin wing moving through the air
can be written in terms of the perturbation velocity potential, ¢, as

Dy + Uy + Pyy = a—lé' Pp 1 (1)
(o]



kY

NACA TN 2403 5

where

X,¥,Z . spatial coordinates
t! true time

&y speed of sound

Equation (1) is applicable when the fluid at infinity is at rest with
respect to the x,y,z coordinate system and the wing or body traces
certain space curves for which time is the parameter; moreover the per—
turbation velocity components u=gQy, =@y, W=, must be -small relative

to the flight velocity V, of the wing.

In the following analysis a flat—plate wing moving in the z=0
plane away from the origin along the negative x axis will be studied.
Since the variations in the flow along the span will be neglected and
the slope of the stream lines at the wing surface will be taken as the
ratio of w,, the vertical induced velocity in the z=0 plane,! to- Voo

the constant forward velocity of the wing, the analysis is consistent
with the assumptions of two—dimensional thin-airfoil theory. Hence, for
the incompressible case, the partial differential equation reduces to

Pxx + Pzz =0 v (2)

since the speed of sound is very large with respect to the velocity of
the wing, and for the compressible case 3t reduces to

Prx + Ppz = Py ‘ (3)
where t equals agt!,

The boundary conditions reduce to the specification of wy over
that portion of the xy plane occupied by the wing as time progresses.

The solution in terms of ¢ can be converted into the loading
coefficient by means of the equation

bp b o9 _ ¥ 3 (%)
do Vo2 Ot' VoM ot

The results for section lift and pitching moment can then be evaluated
by appropriate integrations.

1The subscript u indicates the value of w as 2z approaches zero
from above. Since the discussion is limited to flat—plate surfaces
without thickness, this is the same as the value of w obtained
as 2z approaches zero from below, and thus W, simply refers to the
value of w in the z=0 plane.
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Boundary Conditions for the Indicial Functions

The fundamental boundary—
value problem to be considered in
o< \ this report is the one generating
the so—called indicial curves for
) loading, 1lift, and pitching moment.
' By definition, an indicial function
-~ is the response to a disturbance
0 . t vwhich is applied abruptly at time
equals zero and is held constant
thereafter; that is, a disturbance
¢ glven by a step function. For
Lr example, if the angle of attack
of & wing varies with time as
shown in sketch (a), the resulting
1ift coefficient, also shown in
sketch (a), is designated as the
indicial 1ift coefficient due to
(o) angle of attack. Four such indi—
cial functions will be evaluated,

namely:

cy the indicial section 1lift coefficient due to angle—of—attack
change (without pitching)

c. ! the indicial section pitching-moment coefficient due to angle—of-—-
attack change (without pitching) measured about the leading
edge and considered positive when the trailing edge is forced
down

cy ! the indicial section 1ift coefficient due to pitching on a wing
rotating about its leading edge

c ! the indicial section pitching-moment coefficient due to pitching

g measured about the leading edge for a wing rotating about its
leading edge and considered positive when the trailing edge is
forced down

The equations which transform these functions to those for a wing
pitching about a point a distance ac back from the leading edge and
having its moment center a distance bc back from the leading edge are
simply :
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c, =2¢
[ [
cma = cmaf + b cy
cZ =cl'—acz
d q a
c =c, '"+bcy t—ac, ' —abec
mq mq lq july ch

The boundary condition which applies to the indicial functions due
~ to angle of attack is simply that

Wy = —Va (5)

over a certain planar area in xzt

space representing the area occupied I c —d

by the wing, and elsewhere pressure -
is continuous. For a wing of chord ? 4
length c¢, this area, shown shaded _ '

in sketch (b), is bounded by the x=-kt

traces of the leading and trailing
edges, x = Vot* and x = c-Vgt!?,
and the line along which the motion
started (i. e., the x axis). '
In the case of the indicial x=c-Vol
function due to pitch for a wing

rotating about its leading edge, the E’ ;

boundary condition requires that the o ,

upwash be given by the expression ‘ ’
(b)

wy = —(x + Vgt') § (6)

over the same region in the =xt plane as for the angle of attack case
and, again, that pressure be continuous elsewhere. The angle of pitch, 6,
is taken as positive when the trailing edge is lower than the leading
edge, and H 1is the time derivative, de/dt', positive when the trailing
edge is falling with reference to the leading edge.




Direction of wing motion
e —c———

Flight path of leading

Flight path
of arbitrary point

c)
d:=6=0
(d)
4 = sin wt
oCc =0
(e)
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The difference between 6 and «
is illustrated in sketch (c). The angle
of attack o is the angle between the
flat wing surface and the tangent to the
flight path of the leading edge. The
angle 6 1is the angle between the flat
wing surface and the horizontal.

Sketch (d) shows a wing undergoing a
sinusoidal angle—of-attack variation
with a zero angle of pitch throughout.
For convenience and in order to distin—
guish from the pitching wing, such a
wing will be referred to as a sinking
wing. Sketch (e) shows a wing undergo—
ing a sinusoidal angle—of-pitch varia-—
tion taken about the leading edge at a
constant (zero) angle of attack.

The variable q to which the 1ift
and pitching-moment coefficients of the
pitching wing are referred is equal to
éc/Vo, a dimensionless form of expression

for rate of pitch,

Adaptation of the Indicial
Functions to Maneuvers

When the wing is undergoing a maneu-—
ver in which o and 6 make small but
arbitrary deviations from zero, the bound—
ary condition in the region of the xt
plane traversed by the wing becomes

W, =V, a— (x + Vo t*) 6 (7)

Since the theory is linear, the 1lift and moment on the wing are calcu—
lated from the indicial functions by the principle of superposition,
For example, the 1lift and pitching—moment coefficients developed by an
arbitrary variation of o and 6 are

_d
€1 = att
1
d
. c | -
o gt

o}

t!
c (tt=t1') a(ty?)dty®t + ¢, ' (£'=ty') q(ty?)dt,?
Lo, lq

[Cm; (t'=t1?) a(ty?)dts? + Cmq' (tt—ty') Q(tl')dtlﬂ

~

»(8)

J



™ 4

)

NACA TN 2403 | 9

Equation (8) is derived for an angle—of-attack variation measured
with respect to the flight path of the leading edge and the primes on the
derivatives indicate that the wing is pitching about and the moments are
measured with respect to the wing leading edge. If the angle of attack
is measured with respect to the flight path of some other point on the
wing (as, for example, the center of gravity), then it can be shown for
small deflections that

@ =y — ctfy
VO
6=61 “

where a; and 6; are the angles measured with respect to the new
flight path and c§& 1s the distance from the leading edge .to the new
reference point. (See sketch (c).) The total value of the section 1lift
and pitching-moment coefficients for an arbitrary wariation of a,

and 85 would be

dt,&/h '{sz(t'-*l') [al(tl') - €, tl')J + Cz t'—$1')Q1(t1'{} dt,!

£t .
Cp = a%—.%f {cma'(t'-tl') [al(tl') — £qu(ta") J{+ cmq'(t'—tl*)ql(tl')} dty?

Adaptation of the Indicial Functions to
Flutter Derivatives

The notation adopted in this report does not coincide with the
usual notation used in the study of fluttering wings; however, it should
be sufficient to relate the present notation to the one used in refer—
ence 4. Thus, the values of the terms L, Ls, Lg', Ly and Mp', Mot,
Mg', M,' used in reference 4 can be evaluated as follows:

N

it 4y v iwby?

. i 1 1wty
Ly+ile = 28— t,_»a-%—,f oy (t'=tat)e dty!

o
y (9)
ie—lwt'

M;'+iMot = gttt e dty?
1 2 2k_ t‘-bw dt'd/w m 1 ) 1
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N
1

—Wb' d 5 iwty?

2 — 1lim . !

L'+l ' = e Frag f [cza(t'-tl')+1u>czq'\t'—tl'):le dty?
[o]

>(9)
—jwt’ .
1 . ; '
——2_—621{ £ 100 d.—_i'f [cma'(t'-—tl’)+1w cmq'(t'—tl' )]elwtl !
o]

J

M3‘+iM4'

THE SOLUTION FOR THE INDICIAL FUNCTIONS

The boundary conditions which represent a wing undergoing a sudden
Jump in pitching velocity or angle of attack have been discussed and
presented in equations (5) and (6). Their application to wings flying
at several Mach numbers will now be presented. The incompressible case
will first be discussed, and then the cases in which My equals 0.8,
1.0, 1.2, and 2.0 will be considered.

Incompressible Case, My = O

The solution for the incompressible case is applicable when the
forward speed of the wing is small compared with the speed of sound so
that the ratio V /a can be neglected in comparison to unity. The

basic partial differential equation governing the flow field was presented
in equation (2) as

cPXX+QDZZ=O

subject to the boundary conditions discussed, and the equation for the
loading coefficient was given in equation (4) as

L

op/a, V2 ot

This boundary—value problem corresponds precisely to that which is
studied in three—dimensional, steady—-state, lifting-surface theory under
the classification "slender-wing theory." (See references 6 and 7.)
Such an analogy is useful since well-established concepts in one theory
can be immediately carried over into the other. (It should be re—
emphasized, perhaps, that the subsequent treatment of the incompressible
case is not intended to be an improvement on Wagner's original deriva-—
tion but rather it is a rederivation along lines that will be used later
in the analysis of the compressible cases.)
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-

The initial pulse.— The first analogy
with slender-wing theory which will be used , Y
- concerns the initial pulses that occur in the
values of lift and pitching moment. It is a
well-known result (reference 6) that the 4 - 4
total 1ift, as given by slender-wing theory,
on the wing shown in sketch (f) is a func— Y
tion only of the maximum span and the value (f)
of w,; along the section of maximum span A y
(section AA). Tt is, therefore, independent Pulse in -
of the wing twist and leading—edge shape ‘ lift alon
ahead of section AA. This concept has been it
extended in slender—wing theory to the extreme leading
case shown in sketch (g) of a rectangular edge
wing. The 1ift on such a wing is concen— (g) Yx
trated entirely along the leading edge and is
a function only of the span of that edge and
the value of wy there. By the analogy
existing between the two theories, therefore,
it is evident that the solution to the indi--
cial problems in two—dimensional, incompress—
ible, unsteady flow (sketch (h)) will contain
a pulse at +%=0.

Pulse in lift at #=0.
X

(h)

- The evaluation of this pulse will be
treated briefly. A solution to equa—
tion (2) for the vertical induced velocity

* in the  2z=0 plane can be written in terms = ' N '
of the jump in u across the z=0 plane x=-alt) , x=b(t)
(see reference 7), thus, for the shaded :
area in sketch (i) this is ¢ X

b
=_ 1 Au(x; )
Wu(X) - T B5x '-'-}—{-_—Xi—- dxy (10)

/|

17

-a

The general inversion of equation (10) )
can be written (i)

Mu(x) =

fi__.A 2 u/b wu(xl)
7/ (x+a) (b—x) ¥ ﬁJm n ';_—X:— V (x1+a)(b—=x1) dx; (11)

where

.
A=f M dx
" - .
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In the present case A 1is zero, since AQ is zero at x=-—a and x=b,
and an integration of both sides of equation (11) with respect to x
" between the limits b and x gives

b ) 7
ALY ,x) = _.%f w(t?t,x;) ln'«/(b—xl)(a+x) + o/(a+xy) (b—x) ax,

—a (x—x1)(a+b)

Adoption of the notation
v(t',x;) + constant =f w(tt,xy) dx;

and integration by parts leads to the equation‘2

—_— )b
&0 - _ 2/ (o-x)(arx) [ v(t',x) dx;

ki J

(12)
‘o (xx1)b-x,)(a+x;)

The loading can now be determined by using equation (4). If the
shaded area in sketch (i) is allowed to vanish, all the loading accumu—
lates along the x axis in the region 0< x< c. Therefore, the inte—
gral of the loading with respect to- t!' over the shaded portion must be
considered. The final result for the pulse loading (Ap q°)8 at t'=0

can be expressed in terms of the & function (see 1list of synbols) as

<ég> - _ b0 SR [c v(0,x1) dxy (13)
Ao 5

o \-O (X“Xl)A/C—Xl) X1

The boundary conditions for the sinking and pitching wing given by
equations (5) and (6), when inserted into equation (13), yield

[-é?i\ - 15(0) V(c=x) x
o

q.o v
\o/8

‘I (c+2x)8(0) fr—T
K = +V02 (e—=x) x

Q.8 5

(1k)

2
The constant gives zero when placed in equation (12), provided
b>xs —a,
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After integration, the pulse values for lift and pitching moment
may also be obtained. Hence,

<c1@>s - & 000) )

<cmm'> = - = 8(0) > »
(CZ 2 =uvo 2(0)

(oo’ ) @50 )

where the primes indicate that the wings are pitching about and the
moments are measured about the leading edge. These expressions may be
inserted in equations (8) and (9) and, since the integrand becomes zero
everywhere except at the point +t;'=t!, the expressions for the 1lift and

2 pitching-moment coefficient developed by an arbitrary variation of a
and 8 with time are

tc ° nc2
cy = o + e
2
2v hvo
2
cp' = - X g _.EL-EEE ]
Vo o o

The variation for +'> O.— The integral equation (10) is still per—
fectly valid when applied to the flow field for t'> 0. It is convenient
to rewrite the equation in this case, however, so that the effects of the
vorticity on the wing and in the wake are separated. Thus,

1
S T ey S R T S -1 C o )
u 2n J X—X1 17 ox X—X3 } (16)

t
—Vot' C—Vbt
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where Au*(x;) is the value of Au in the
starting vortex wake. It is independent

of t' since its value at all points along
the line ab in sketch (j) is the same as
at the point a.

A reduction of equation (16) can be
obtained for the case of the sinking wing,
where w,;= ~Vo&, by using the inversion
(j) given by equation (11). Thus,

nAu(t?,x) va+th')(c;Vot'—x) = A-nt(2x+2V t'—) Vo +

¢ v4x1+V6t')(x+c+Vot')
Lu* (Xl) Irl + (X——Xl) jl d'xl

c—V,t!

Since A is given by the relation

c-V _t1? c
o
A = J/‘ Ma(tt,x;) dx; = — J[‘ Lo*(xy) dx,
Vb c-Vgt?
it follows that
Vo (2x+2V_tt—) 1
Lu(tt,x) = — ° 2 +

/ (x+V 11 ) ( c—Vt'—=x) = J(x+vot ') (c—V t'—=x)

~C *
Mu* (x, ) ~/(x1+V £1) (x,—c+V. ) dx;, (17)
X—Xq ° °
c—V tt |
o

According to the Kutta condition Au(t',x) vanishes as X approaches
c—Vot'; the integral equation for Au*(x;) thus becomes

1 p° X14Vott '
v = = Au¥* (x —17'ob dx 18
o P ( 1) - +Vot' 1 ( )



NACA TN 2403 15
which was derived and studied originally by Wagner (reference 1).
‘The section 1ift and pitching moment can be derived in terms of

Au*(xy) in the following manner. By definition, the section 1lift 1°
is

c—V.t?t PN i
2 (e} o]
z=%povof éﬁdx=pof g—%?dx (19)
-V t* ° —V_t!

Since the value of AP is zero at the leading edge and at the'trailing
edge is equal to the total circulation TI', two alternative forms for the
1lift can be written

3 [p—Vot'
1= pVI + pg ath Np(tt,x) dx (20)
' —V "
and
LV bt ‘
1= polc-Vtt) -89-:-'- - g ai—'/; o Ma(t?,x) dx (21)
Yo

By substituting equation (17) into (21) and integrating, it can be shown
that

c
v Lu*{x
1 = mp eV 2 + P00 f o (x1) dx, (22)
2 c-V,t! v[(Xl*Vot')(Xl—C+Vot')

(")
Since the value of Au*(x;) has
been determined by Wagner, equa—
tion (22) represents a solution
for the section 1ift. A plot
of its variation in coefficient CZ
form is shown in sketch (k). o
Initially there is the pulse ]
having an intensity defined by
equation (15). After the pulse
at t'=0, the value of the sec—
tion 1ift coefficient starts at
one-half its asymptotic value.
It then increases, slowly 0 - . .
approaching its asymptote of 2. () 2 4

bec/C

(k)
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By definition, the pitching moment can be written

c—Vot' A
=1 2 ! &p
m 5 poVO J/‘ (Vott+x) T dx
= t
Vot
(23)
c—Vot'
= - pof (V t14x) DO gy
J v 41 ot?
o

where the moment is taken about the leading edge and is positive when
the trailing edge is forced down. A development, similar to the one
given for the 1lift, gives

1 (24)

This result, that for t>0 the indicial center of Pressure remains con—
stant at the quarter chord throughout the motion, is classical.

If the boundary condition for a pitching wing, wy = —(x+Vot') 8,
is substituted into equation (16) and the inversion given by equation (11)
1s again used, it can be shown in the same menner used in the derivation
of equation (18) that for x = c—Vyt! the relation

C
3 CZé = - lf Au*(x ) .ﬁjig_t_'_ dx
T x YW xi—eHger T

c-V tt
o)

applies. This integral equation applies to a wing pitching about its
leading edge. If, instead, the wing is pitching about the three—
quarter—chord position, an essential simplification is achieved. 1In this
latter case, downwash is given by the expression

Wy = —é(x+V6t'-—% c) (25)

and the resulting integral equation becomes

Cc
0= f M gx(x1) [omeger Xy (26)
c—V, t!* ' °
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where Aug*(x)) represents the vorticity in the wake following such a
motion. The solution to equation (26) is simply

AuS* (Xl) =0

From equation (27) it follows that the total indicial 1ift for +'>0
on a wing pitching about the three—quarter chord point is zero, and that
the wing wake is free of vorticity. Further, it can be shown that the
total indicial pitching moment (still measured about the leading edge)
is

(27)

ncS ’
m=—%—V09 (28)
The transfer of equations (27) and (28) back to the case in which

the wing is pitching about its leading edge can be readily accomplished
by means of the boundary conditions shown in sketch (1). ' Hence, if

— = C
q 4 zot ' (/4714/2
Y v}
30—
.} + 4
~—c— _ %‘9,- = el
}9’ c—-‘ v c iﬂil'ﬁ
-+
(1)

<%zq>3/4, refers to the 1lift coefficient on a wing pitching about the

three—quarter chord point and <cmq'>3/4 refers to the pitching—-moment

coefficient measured about the leading edge of a wing pitching about the
three—quarter chord point, then

\
SRR S
q 3 /4 q

(29)
<Cmq'>3/4 " omg' T % “mo; -
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By means of equations (24) and (29) the expressions for the three
indicial functions, cpy/', czq', and Cmq' can all be written in terms of

the indicial 1ift function for t>0. Hence,

Cmg = i'f ®la
czq' = % cq, > (30)
cm,' = —=¢ -Z
fg 16 “lo 8
)

The variations of the four indiciasl Punctions are shown in figure 1.
For values of Vot'/c larger than those shown in the figure the approxi—
mate equation suggested in reference 2 can be used, namely,

c = 2n | 1- 1
ly 2+{Vyt'/c)

This alternative result has, according to reference 2, an error of 2 per—
cent or less for the entire range of time from O+ to infinity.

Subsonic Case, M, = 0.8

When the Mach number is no longer small, the analysis in the pre—
ceding section must be modified. As an example of this modification, the
calculations for a wing traveling at a Mach number equal to 0.8 will be
carried out in detail.

Equation (3) presents the basic partial differential equation of

~the flow field, and equation (4) gives the expression for the loading
coefficient. The analogy which existed in the incompressible case
between the theory for the unsteady, two—dimensional wing and slender—
wing theory exists in this case between the theory for the unsteady,
two—dimensional wing and the theory for a steady—state, three-dimensional
wing traveling at a supersonic speed. Thus, in the three—dimensional,

steady-state case the partial differential equation governing the flow is

Pyy + Pzz = B0xx (31)

and the equation for the loading coefficient is
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Ap _ 4 09 :
T x (32)
The boundary conditions are in both cases that ¢; is given over a
portion of the 2z=0 plane. It is evident by a comparison of equa—
tions (3) and (31) and equations (4) and (32) that results from the
three—dimensional, supersonic, steady—state study (hereinafter referred
to as the steady—state case) can be transferred to the two—dimensional,
unsteady study (hereinafter referred to as the unsteady case) simply by
replacing x, y, and B in the former case by t, X, and 1, respectively,
and by dividing the result for the

loading coefficient by M.

The analog to the boundary L* C—J
condition for the problem of N
finding the indicial loading on a N
two dimensional wing flying at a
Mach number equal to 0.8
(sketch (m)) is the boundary con— ’ w, given
dition for the problem of finding y
the loading on a constant—chord,
swept—forward wing tip with a
subsonic trailing edge such as
that shown in sketch (n). The
Mach cones in the steady-state
case, traces of which are shown
as dotted lines in sketch (n),
become, in the unsteady—state
analog, the locus of the sound
waves which started at +=0 from (m)
the leading and trailing edges of
the two-dimensional wing
(sketch (m)). Finally, the ¢ —'-'|
analog in the steady—state field
of the unsteady wing would be a
flat plate for the unsteady
sinking wing and a plate with a A--
linear variation of twist for
the unsteady pitching wing.

N N
N N\
w, given

A detailed analysis of an / 4
unsteady, two—dimensional wing ' AT ><7 7~
flying at a Mach number equal to V.Y VA KA \
0.8 will be presented. Just as [ \ 1
in the section on incompressible \ . \ ] Iy
flow, the study will be divided . \ / /
into two parts. In cases for ~ e /
which My#0, however, the indi—
cial functions contain no pulse (n)
at t=0. Hence, the first part
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of the My=0.8 study will be concerned with the behavior of the indicial
functions in an interval for which t 1is small but finite (actually
0 <t < 5c) and the second part, with their asymptotic behavior.

The early stage.— The analog which exists between the steady—state
and unsteady cases may be utilized to greet advantage since the large
number of special methods and techniques developed for the solution of
problems in the former case may be applied to the solution of the
analogous problems in the latter field. In this manner an exact solu—
tion for the loading over the five regions shown in sketch (o) may be
obtained for both the sinking and the pitching wing in an unsteady flow
field by the use of methods such
as those presented in reference 8.
Solutions for larger values of
time could also be obtained, but
the labor involved in calculating
such cases becomes prohibitive and,
as will be shown later, approx—
imate methods can be developed
which extend the solutions for the
indicial 1ift and pitching—moment
curves to their asymptotic values.

The analysis used to calculate
(o) the loading in terms of x4 = x/c
and to = t/c over the five

regions shown in sketch (o) on both the sinking and pitching wings is
outlined in appendix A. Plots of the loading on a sinking wing are
shown in sketch (p) and, in more detail, together with the loading on a
pitching wing, in figure 2. At t,=0 the
loading is constant,® and as time increases
the loading~coefficient curve approaches the
femiliar two—dimensional, steady-state shape
given, for the sinking wing, by the equation

Ap _ ba fox

6 B p- (33)

(p)

’the result that the initial shape of the load distribution is the same
as the shape of the given curve for wy also applies to all three—
dimensional wings of arbitrary plan forms traveling at subsonic or
supersonic Mach numbers.
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where x 1is the distance from the leading edge which is at the point
x=0. Sketch (q) shows that the distribution at 1o = t/c = 1/(1M) =5
is already essentially the same distribution as that obtained at to=e«
(i.e., the agreement is good with the curve produced by multiplying the-
right side of equation (33) by a constant factor).4 The use of this fact
simplifies subsequent enalysis concerning the asymptotic behavior of the
indicial 1lift curve.

Load distribution a?

o
o 5 10 .

(q) °

The indicial 1ift and pitching-moment functions were also calculated
(see appendix A) in the range 0< to < 1/(1-My). Their variation in
this interval is shown in sketch (r) for My = 0.8. It is evident that
the calculations must be extended beyond the point to=5 since the
asymptotic values are not yet even closely approached.

Before studying the nature of these curves for large values of tg,
however, it is useful to examine them with reference to the discussion
in the previous section on incompressible flow. For example, it was
pointed out that the indicial center of pressure on the sinking wing
remained at the quarter—hord point for t'>0, It is, therefore, per—
tinent to consider the location of the center of pressure on the sinking

wing when Mgy = 0.8. By means of the curves given for Cly and cma'
and by the relationship

4
A similar result was noted in the study of the load distribution on
swept—back wings with subsonic leading edges (reference 9).
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Iy ———— H o -
’ .
Cto L Omg \e —
2r/8 /28
0 — 0 -
0 % ? 0 % g

0 — 0 -
0 A S o A 5
(r)
cma' - (X/c)c.p. %

the variation of (x/c)c. . is easily evaluated ((x/c)c_p‘ is the dis—

tance between the leading edge and the'center of pressure divided by the
total wing chord). This variation is shown in sketch (s). It is

507
X
(¢},

2 5 -_— - - -— LTS S A et

(s)
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apparent that the center of pressure is very close to the quarter—chord
point for values of to>5. Hence, at My = 0.8 the significant effect
of compressibility on the location of the center of pressure is contained
in the interval O £ to £ 5. This leads immediately to the further use—
ful conclusion that for values of ty greater than 5 the yvalue of the
pitching-moment coefficient is given essentially by the equation

Cmd:' = - Czdl/}-l'

Likewise, it is apparent from the discussion of the incompressible
case that the indicial functions for the pitching wing can also be

-1.6 1
(G

-8

'——————=—----
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expressed in a more convenient form by shifting the axis of rotation
from the leading edge to the three-—quarter—chord point. Using the values
of 102 cma', clq’, and Cmq' presented in sketch (r), the variation of

(cy.) and (cp. ') may be calculated from the definitions given in
lq’3/4 q ‘8/4

equation (29). These curves are presented in sketches (t) and (u) and
again it is apparent that at a Mach number equal to 0.8 the compressi—
bility effects are contained in the interval O < to< 5.

The later stage.— It follows from the preceding discussion that when

to is large, the values of the indicial functions cp.', czq', and cmq'
for compressible flow can also be expressed adequately in terms of ¢l

by equations similar to equations (30) which were derived for incompreSs-—
ible flow. Thus for to > 5, one can write
)

Cmdl' = - Cza/)-l-

oq" = 3 oy, /4 (34)

cmq' = - (3cla/l6) ~ (x/8B)

A

The four indicial responses have all been shown to depend only on
the value of the function ¢; if t, is large. It remains, therefore,
a

to determine the asymptotic behavior of Cly This can be accomplished

in the following way. Consider the steady—state solution for the 1lift on
a two—dimensional, flat lifting surface traveling at a subsonic Mach
number. As was pointed out by Wieghardt (reference 10), if the 1ift on
such a surface is represented by placing at the quarter—chord point a
vortex which has the same circulation as that developed by the wing, the
angle of attack measured at the three—quarter—chord point will be the
same as that of the simulated lifting surface. Extending this concept to
include the unsteady effects, an investigation will be made of the varia-
tion with time of the vortex strength which will maintain a constant
angle of attack at the three—quarter—chord station following an impulsive
start at to=0.

The analogous problem in steady—state theory becomes one of finding
the strength of the vortex system, shown in sketch (v), which gives a
constant value of W along the line CD.°

Each vortex composing this system lies along the line AB, extending
from the minus infinity toward the origin, and trails back parallel to

S5In the vicinity of the origin, of course, this representation gives a
poor approximation to the original boundary—value problem; hence, use
of the results must be limited to the regions in which to is large.
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(v) Steady -state analog -  (w) Unsteady case

the =x; axis to form the trailing vortex sheet. Note that, for con—

venience, the origin of the axis system has been located at the quarter—
chord point. The solution to such a problem in steady—state, lifting—
line theory would result from the solution of the integral equations
(for a development using the notation adopted here, see reference 11)

Ei AWY1jdX1
- Qn\jf dya1 \fF[(X—X1)2 - B2(y—y,)2]8/2

where A® is not a function of Xy since the strength of a trailing
vortex is, of course, constant. The area of integration T is the
region within the forecone springing from the point x,y.

If the above equation is transformed by means of the analogy to
represent the solution of the unsteady problem (see sketch (w)),

6The synbols Ljp and .jf are used to indicate that the finite part is to
be taken.

Thus (see reference 11 or 12),

fylay _ 3 /P s(y)dy
a (x—y)2 3 Jy  (x=y)

=G (x,b) -G (x,a)

where G (x,y) is the indefinite integral of f£(y)/(x—y)2. Further,

[7 ey

Jg (X‘Y)S/z ox /g «/ X—y
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B, x, and y are replaced by 1, t, and x, respectively; and A9, the
total jump in potential at & given section, is replaced by the circula—
tion [I'. Hence.

-1 1)
TS fdxlj[ [(t—t,)2 x—-xl)z]s/gdtl

where T, as indicated in sketch (w), is the area in the forecone from
the point P which lies always along the lint x = (1/2)c — Mgt.
Integration with respect to t; reduces the last equation to

1 0o I'(x1) [t+x1] dx;
T 21 J Mo(x-t) ez )? f t+x (x4 )2
1+ M,

which, by means of the substitution x1/c = x2/2 becomes along the line

x =2 Mot

1 Ao (AoHio—=x2) T(x2)
X

= F dx 5
cnp ja (Hz‘W0+X2)2~/(XO*X2)(XO+H1—12) ® (35)

where Ao = 2 Mgto = Ho, Ho = Mo/(14Mo), M1 = 2 Mo/(1-Mo?), na = 1/(14M),
to = t/c, and where, of course, w is a constant equal to —Vga.

A solution for T(x2) in the integral equation (35) may be obtained
by expanding I in a series of the form

neaV /[ Xo / X2
P(X2)= Bo|: m+bl (—;;;{-2—)3‘*'...:[ (36)

Place equation (36) into (35) and expand in powers of 1/Ag. There
results the expression

- W _ l + E_]_-. + CZZn(léXo) + 03
Voo *o *o A3

+ e o
(e}

in which
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a 1
c1 = by = j? *5e

Hence, if apo and by are chosen so that c¢3 is equal to zero, an
expression for I' will be obtained which represents the solution to the
integral equation (35) correct to the first order in 1/tq (i.e., 1/Ag)
for large values of to. Further, if equation (36) is expanded in
powers of l/xz, there results

I'(xz) =“—°§°Y-Q[ 1+ 5x(b-32) 4 . . J

which becomes, using the condition for c; and relating x- and to
by the equation of the leading edge,

P(to)=“cgvo[1~m+. . J (37)

The relation between circulation and 1ift in incompressible flow
has been derived and presented as equation (20). For compressible flow,
this expression becomes

a l—NIot fo) '
1 = poVol + poro SE—‘jg;t AY(tg,%0)dxe
, o o

where x5 = x/c; In order to obtain a complete expression for the sec—
tion lift, it is obviously necessary to know the chordwise variation of
A9. The asymptotic behavior of 1 can be calculated, however, by
applying the results presented in sketch (q). This result suggests that
for large values of to the value of AP(tg,Xo) used in the equation
for section 1ift can be expressed by the product of AP(«x,) and
Nto)/T(®). In other words, for large values of to the shape of the
chordwise distribution of vorticity is the same as the two—dimensional,
steady—state value. An indication of the accuracy of such an approxima—
tion is shown in sketch (x) where the precise value of AD(tg,%y) is
compared with the approximation at to=5. '

Since I(») = maVyc/B, the substitution of
AcP(to,vxo) = A(P(“’)Xo) I'(to)/l"(oo)'
gives for the 1lift |

.3 ar
1 = poVOP + E poa-o d_t
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30 1
%Y

Voo

Approximate - - -
Exact —

20

r

/0

LE Xy TE
(x)

Place equation (37) in the above equation and it is evident that s, to the

first order in l/to, the section lift is given by poVol's Hence, it
follows that for large to

- en

1
, I S 8
e =8 (17 Tgege® > (38)

There remains the problem of joining the above result for c¢j3_  with

the one derived in the preceding section and valid for O_<_t055. To
accomplish this end the equation

—exlq _ 1 _ hy
% = B [l tio + 2Motop2 _ (ho + 2Moto[32)2:l (38b)

was used to express ¢ for the range 5<to. Obviously the value of
¢y, &lven by equation (38b) has, to the first order in 1/ty, the same

asymptotic variation as that given by equation (38a) regardless of the
values of the constants hy and h;. These constants can be chosen,
therefore, so that both the magnitude and slope of the indicial Clg,
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curve given by equation (38b) are continuous at to=5 with the exact
c1, Curve obtained for O S to £5 1in the previous section.

The curves for cmm’, Clq" and cy ', as previously discussed, can

be calculated from cy, by the use of equations (3%). 1In each of these
three cases, the magnitude of h; was modified slightly so the resulting
curve would be continuous at t,=5 with the exact results presented in
the preceding section. The final expressions are

o, 220 [q_ 1736 131.2 )
o =B 17.06 + to  (17.06 + to)2 |
e 1.736 121.8
c = = - = -
T T 28 | T T 17.06 + to  (17.06 + to)? }
> (39)
gt =3 [1_ 1.736 134.3 ]
T 2 |7 17.06 + to  (17.06 + to)? |
ot =X [y ___1.302 90.53
. 2B |7 17.06 + to  (17.06 + to)2 |

The final indicial section 1lift and pitching-moment curves are
shown in figure 1 plotted against the parameter Vot'/c, the number of
chord lengths traveled (Vgot!'/c = Moto). Tabular results of the indi—
cial curves are also presented in table I.

Sonic Case, My = 1.0

The general results, obtained in the preceding section and pre—
sented in appendix A, for the indicial loading over the sinking and
pitching wing may be extended to the sonic case. Furthermore, the two
intervals for which analytic results in a closed form were presented in
appendix A now cover the complete time range since 0 < tg < 1/(1+Mg)
becomes O < to £ 0.5 and 1/(1+Mo) € to < 1/(1-My) becomes
0.5 £ to S ». Hence, by an appropriate limiting process equations (A8),
(A9), (A10), and (All) become for O < to < 0.5 .

& cza, = b w
Cmq" = —2 + toz

. o . > - (koa)
Clg' = 2 + to
emg = ~(4/3) - (2/3)t5° J
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and for 0.5 Sty S o

t.—~1
Cly = (4/x) <2 2to—1 + arc cos go )
/ 2 to—1
emyt = —~(2/x) [3+t0 N 2ol +&l— 1-:-,Q-->arc cos — 1.
2 2 to J
>(kob)
t= (/) [E_EQ 2toml +//l + to arc cos Lot ]
czq 2 (o] \ 2 _to _J
¢ 1 = (4/311:) I:M 2t —1 +’/l + Ei) arc Cos to—ﬂ
g 3 0 K 5 'TET]

/

Since the magnitude of the functions in equation (4Ob) grows indef—
initely with increasing time, the assumptions of linear theory are even—
tually violated. However, for moderate values of to, these functions
have the same order of magnitude as similar indicial curves for Mach
numbers other than 1. These effects are illustrated in figure 1.

Supersonic Case, Mg = 1.2 and 2

The method of obtaining solutions for the indicial functions at
supersonic Mach numbers parallels the development presented for My = 0.8.
The steady-state analog to the supersonic unsteady wing problem is a
constant—chord wing tip with a supersonic trailing edge. See sketches (y)
and (z). It is well known that the problem of finding the loading over
wing plan forms with all supersonic edges is one of the simplest in three—
dimensional, lifting—surface theory. In fact, since the upper and lower
surfaces are noninteracting, the solution is determined by integrating
sources within the Mach forecone. The analysis for ¢y, has already

been carried out in reference 5.

(z) (y)
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The analysis used to calculate the loading in terms of xo=x/c and
to=t/c over the three regions shown in sketch (aa) is outlined in
appendix B. An example of the manner in which the loading varies with
time over a sinking wing traveling at a Mach number equal to 1.2 is given
in sketch (ab) and, in more detail, together with the loading over a
pitching wing, in figure 3.

(aas (ab)

The expressions for the indicial 1ift and pitching—moment coeffi—
cients are given analytically in appendix B, and plotted in figure 1.
It can be shown that the results given in appendix B reduce to the
expressions given by equations (40) when M, is allowed to approach one,
so that there is no discontinuity in the theory in passing through the
sonic range.

CONCLUDING REMARKS

The use of the analogy between the basic flow equations in steady—
state, lifting-surface theory and in unsteady-state, ailrfoil theory has
resulted in a method of calculating two—dimensional indicial functions
throughout the subsonic and supersonic flight range. The results are,
of course, subject to the restrictions of linearized, compressible—flow
theory and, for example, the calculated responses given in figure 1 for
sonlc speeds must be considered as being outside the realm of validity
within a few chord lengths of travel. In application to high—frequency
oscillations, however, the initial portions of the indicial curves
dominate the response chsracteristics of the airfoil and calculations
near Mo equal to one need not be invalid.

In the supersonic range, the expressions in appendix B are calcu~—
lated for arbitrary Mo. It is apparent that no Pixed Mach number effect
can be used in transient responses except at high values of flight Mach
number. In the subsonic range, however, the expressions apply only for
the period of time 0 < t, < 1/(1-M,). For values of to 2 1/(1-M,),
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the method outlined in the report appears to be satisfactory for Mach
numbers equal to or greater than 0.8. Preliminary calculations made at
Mach numbers less than 0.8 indicate that it is necessary to extend the
exact solutions past to = 1/(1-Mo). This extension is feasible if the
cancellation techniques outlined in reference 13 are employed and the
more difficult integrals are expanded into series form.

Ames Aeronautical Leboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., April 12, 1951.
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APPENDIX A
DETERMINATION OF SUBSONIC, INDICIAL, SECTION LIFT AND
PITCHING-MOMENT CURVES

THE LOAD DISTRIBUTION

The following results for the indicial load distribution on sinking
or pitching wings can be obtained in two ways. One of these methods will
be outlined in the subsequent paragraphs. The other is outlined in
references 13 and 14 and is referred to as the lift—cancellation techni—
que. The latter method has been used to check the load distributions
originally obtained by the former so that an independent check of these
results has been carried out.

It was shown that the lifting—
surface analog to the solution for
load distribution over an unsteady,
two—dimensional wing traveling at a
constant subsonic speed involved the
calculation of load distribution
over a swept-—forward wing tip with
subsonic edges. Sketch (ac) indi-—
cates the geometry associated with
the boundary conditions, and the
solutions are calculated for the
various regions shown.

In the notation of the unsteady
problem the expression for the velocity potential can be written

Q= — %\/C/P (wu) dty dxy (A1)
T W (=t1)P~(xx1)

where T 1s the area on the wing plan form included in the Mach fore—
cone from the point (%,x). Equation (Al) is applicable only for cases
in which w, 1is known at all points within the forecone, as is the case
when the edge of the wing within the forecone is everywhere supersonic
(i.e., region 1 in sketch (ac)). However, Evvard (reference 8) has
extended the solution provided by equation (Al) to include cases such as
shown in sketches (ad) and (ae) in which the forecone intersects a sub—
sonic edge and includes a region of unknown upwash. As was pointed out
in reference 8, equation (Al) applies in these instances if the area of
integration 7 is limited to the shaded regions shown in the sketches.
It is apparent, therefore, that the potential (and thus the loading)

over a sinking or pitching wing can readily be determined for regions 1,
2, and 4 in sketch (ac).
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P

(ag) 't (ae)

Points in regions 3 and 5 have forecones which intersect two sub—
sonic edges, and the method just discussed can no longer be directly
applied. In reference 8, however, a method was given of evaluating the
upwash in the region between the Mach cone from the apex and the leading
edge (region 6 in sketch (af)). Thus, the plan form has become, effec—
tively, one such as shown in sketch (ag) in which only one edge is sub—

sonic. This reduces the problem of finding the potential in these
The analysis

regions to the same problem as was involved in region k4.
used in finding the loading over the various regions will now be

considered.
x x
N 1 N
\¢ S \\\\\3§
4 N
VT |

(af) (cg)

First, introduce a new coordinate system in which the lines x = —t
and x =t are taken as the r and s axes, respectively, (see
sketch (ah)). (This amounts to a rotation of the original axial system
through an angle of 45°,) The transformations relating the r,s to the

X,y system are
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r= 2 (t—=) t = (r+s)
= —= (t= = —— (r+s
A/? l\/ 2 / " ,‘:—s -
|
i s
1 1 T 4
5 = — (t+x X = —= (8~ '
4 = (t+x) 7 r) 5 : I\ . SUsMo) . V2
| /"Mo /"Mo
In the new coordinate system equa— 1 3
tion (A1) is written sz cNZ
[
(v )drids e 2 §= c/2
- ff wdradss (o) \ | NS T M,
ﬂ«/ V(r-r1)(s—s1) P\ |
| | = s /+M0
The vertical induced velocity: | /=Moo
wu over the wing plan form is given ‘
in equations (5) and (6) for the sink— r
ing wing and pitching wing, respec— (ah)

tively. The method developed in

reference 8 was used to obtain the

value of wy over the area between the lines s=0 and r=s(1+My)/(1-M,)
(region 6 in sketch (af). The results for the sinking and pitching wing
are, respectively,

.
_ e 25 _ 2
T T [/ (rm)Mo(rrs) 0 oR /(r—s)%<r+s) }
_ 29 1 _ 28 2s _
T E [( Fe)Holrre) J/(r—S)—Mo(r-i-s) )
[ (r—s)M(r+s) —] arc tan V/k —Mb(r+s) }_

In terms of the r,s coordinate system, the expression for the
loading can be written :

&p _

do voMo JF <ar as (k)

If the subsonic trailing edge is not included in the forecone from the
point at which the loading is being determined, the expression for
may be substituted directly into equation (Ak). However, if the trailing
edge is included in the forecone, and if the Kutta condition is to apply

along such an edge, it can be shown that the equation for the loading
coefficient assumes the form
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Ap _ 5 f 4 a >f Wy )ds, (45)
d6 ﬂVoMo '\/?'r_lK Brl A S—Sl

Sinking Wing

The preceding method can be applied to the sinking wing to obtain
the following integral relationship for the loading over the various

regions. The subscripts on < ™ > indicate the region for which the
o
particular equation applies.

1/ 4&p =2<a+i>/r drlfs ds
@qul Mo\ or ~ 3 /g Nary

‘\/ r-ry —Tr1

Ql
VR
&8
~—"
|

T
) ;M:<ar >f r(1-Mo) «/ s—81 Jg; /r—rl
(1+Mo)

_g_frdrl,/’a+_§_>fs asy
Mo L o ,/r-—-rlK oriy Os (l—MO) & 8—51

|+
™~
ey
&5
m\/
]

Ty
(1+Mo)
r1 (1)
[ -
0 r-ri ory s o]
/ 251 — arc tan 251
2 4 (r1—s51)Mo(ri+sy) are (r1—s1)Mo(r1+sy)
x %51
5—S1

L= a) 7=
Tq r-r3 -Iri -S
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Q=
VRN
58
i

4 nMO '[ A T3 Karl >L_r ,/s-—-sl

(2) =—2—J (2,
@ K %o 5 \-I'd A\/_I-"'Tl arl f (l—MO) S—Sl
1+MO)

r ry(1-Mo)
f < f (1+MO - -2- dsy
rg ,/ r—ry \ Ory Bs o 0

254 _ " / 281
/(rl—ol)—Mo (r1+s;) are an A/(rl_sl)_MO(rl+Sl)

S—81

where

s(1+Mp)—cy/ 2
1M,

I'd=

Most of these integrals can be readily evaluated to give

1) _ 4
L ( %)1 - i (A6a)
? -8 / Mo / toXq + arc tan / Mototxo ) (A6b)
ﬁhdo K l+1w° Mo'to"'Xo to—Xo

8 [ tomo, b [ ire sig ZoTto(l-Mo)
w(1t) of Mgtotx, i (1440)

2(1-x0)—to(1+Mo)
to(1Ho) } (A6e)

8 [ x=1Mt
HMO arc sin m (A6d)

QP
PN
D>

£le

el
VRS
g5
N
1

arc sin

E(érz _
o1 q-04
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1/ 4o = 16 / to=Xo T 0 . N
. <qo 5 72(14)  Mototxo [ p T LKD) — K8 (VK 4 KE (k1)

2 arc sin = + L arc sin 22—t (1-Mp) +

Mo t My (14Mp)t
32K IxoMoto  _ 2 o0 g5p 2te(M) |, ¢
1=(1+M;) (1 M2) (x0+to) Mg to(1+ Mo)
(A6e)
where
k' = /1-%2
k =

==
(totxo) (1+Mo)

o ’;Mo_[s—m { L/(s"'sj.j:r‘"‘sl) ]

. (r+s1) (1 M) [ (s—52)(14My) — co/2 1+ 251 [s(14M) — ¢,/ 2 (1-Mp)] }
[s(14M) — e/ 2 + 53(1Mo) 1 r(1Mo) — s1(1+Mp)]

arc si

Pitching Wing

A similar analysis of the pitching wing yields the following
results for the loading coefficient:

%<§§2 - ;“_g <Moto+xo> (A7a)
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r . 3/2
%(% ) = 33(1‘840 [?;ii—dj\;g) (t;';:ozxo + 3A/(to—Xo)(Moto+Xo) +
v o

3(M to*x,) arc tan /M_:?_o_;}_g“ (ATo)-
0~ 20 | )

s\ _ 8 1 Mo(1¥)  [(tox0)® _
<q—(;>3 = ;M—: { A/('bo"Xo (Mo’co+xo) + - (1+M0)2 T

J [1=(Mgto+xo) 1 (totx) — 11 +

Q|

1—(Mototxo) _ to—Xo
(Motot+xo) [ arc tan Ttoima)l r———] arc tan Motorxg
| (ATc)
1 [ Ap _ 8 / 1-(Moto+xo)
a <qa'>4 = ;M-; {(Mo‘bo+xo) arc tan —?;:}Z;—_l—— -
J (totxg1)[1~(Mgtotx,)] } (ATd)

Q|

(gtotne) tontt Jilirorng) | - Yol berze)

: Mo(1-Mo) A to—=xo)°
J(to=o) (Mototxo) + 3(1g)2 E_%ﬁ;—;— -

tot+
(Mgtotxo)| arc tan 0™¥0 _ arc tan Yototxo
to—%o to—=Xo
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Mo —1 /[ (tox0) (1-Mo) 1 1
J 12 tenh (to+xo)(1+Mg) *gle (ATe)
where ( )
_ L rg\i-M,) l—-M as
T B /C: o {<—2MOM N/ r+S1>

sy (r+sy) + (rg+s1)(r(1¥) + s1(1+Mo) + 251(1-Mp)] N
2 /251 (r4s1 ) (r=rg) [r4(1-M, )51 (14M,)]

{ arc tan

— 2s 2Mox /
4o J/T-ry arc tan rd(l—IvIo)-si(l+Mo) + s V(1Mo )—s1 (14M) +

2 My (281)3/2 ¢ o 1 /rq(1-My)—s1(1+M,)
3 1M, [ s—81 ¥ ~/~7::l N[i:ﬁ; ere ten u/ (1M, (r—rg) }

LIFT AND PITCHING-MOMENT COEFFICIENTS

The lift and pitching-moment coefficients may be obtained by suit—
able integrations of equations (A6) and (A7) and are given in the time
intervals indicated in sketch (aa) by the following expressions:

Sinking wing

1
0=t % 1+Mg
¢y, = N% [1—to(l—Mo):l (ABa)
omy' =~ i [ 1-%0 (1) + tolle (Mo"g)] (A9a)
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2
Ciy = ¥ i3to(1-Mo%) arc tan 2-to(1-Mo7) |
a Mg 1+Mg 2to(1+Mg)—2

_ 2 1+3Mg — —
T <t° 1+Mg >+ (1) ,\/’[E‘bo(l+Mo) 2]1[2 — to(1Ms2)] +

b2t o (1+M) ore sin [to(1Mo)-1
1+Mg to(1+Mo)
1M, 1
g ¥/ Po(liMo)-L + [2-to(14¥o)] are tan /et }*

1Mt |
© 20 ) ax, (A8b)
2_ _ ¢ %0 /4
1+Mo o
where <f1£> is given by equation (A6e)
o .
5

2 2
emyt = — ﬂb8/10 {[to (5-18Mt9Mo®) | 2bo(Mo-l) , 2 ]

16 1+Mg (1+Mp)2
] o tan / oto(1¥®) | [Hto(1Mo)®  to(Mo™Hligr3) | MoP+2kos
| 2lto(1Mp)-1] L 16 2(1+Mp) 2(14Mp)2 |
1 V2 [2=t0(162) [ to( 1+Mo)—-1] [to(1—6Mo+9M02)
arc tan = + +
N to(1+Mg)-1 1+Mo 16(1+Mg)
1+5Mo 1My o 1w | Sto{1-Mg) _  5+3Mo _
1#(1+M0)2J * Loy ¥ ol1to) 1[ 16 B(14M0) H’
" .
/‘12—Mo © (X0+Moto)<§’—§> dxo (ASY)
-t 5
1+M, o
Pitching wing
0sts 13M°
,_2|—t2 M°2‘+*c( 1) + 1 (A10a)
- Clq" = W% | Po \Mom 2 oMo— a
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R 1 8,1 32 2 _3
‘mg T 3Mo{t°a[8 (146)" + 2 Mo ] + 3 to™ (1) Qto(l—Mo)+l}

(Alla)
1 't <...._]_-._
1+Mo __Mo
¢y, ' = —8—-{ to+toMo L to(DMP+oMs—3) M02+7Mo+3} _
1‘1' Mo ° 12(1+Mg) 3(1M,)2
e () o) o))

an o® 1 [ Lotl-toMo |
arc t to+toMo—1 \ m 2) [ arc tan ForboNe

1 _M tanh™ <1—Mo\ <to+toMo_1>J } f 1-Moto g_ e
2 J 1M 1 + botl—toMo

(AlOb)

where G2 is defined under equation (A7e
t 1+ —1
= tanh ¥ o(1+o) > -
TIMO 1+Mo to(l-'Mo)ﬂ

07 (o+1) (APt — B2 (1410)° + 22 (1-315) — 2
{_—QEM" o) = - (10)7 + 32 (1-v) - £

Hoto” tol1Mo):1

—toz[(l—Mo) +8Mp]  to(9MoP—6Mo—11)
W Eo(14¥)= { 2 ( 1) ¥ (i)

39MpZ+5UMo+1 - oy L B
M§6(i+$4)-29 + o t0P—(1 Mgt )2 [to (2+Mo )346 toMo 8]} .

1Mt |
d/; o (xototo) '—i)dx° (A11b)
B 1+Mo
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APPENDIX B
DETERMINATION OF SUPERSONIC, INDICIAL, SECTION LIFT AND
PITCHING MOMENT CURVES
THE ILOAD DISTRIBUTION
In the case of the unsteady supersonic wing the expression for the

velocity potential may be readily obtained by placing the values of Wy
given by equations (5) and (6) in the equation

¢=—%f[ wydsy (=)

S (t=t1)2—(x—x, )2

where T 1s the area on the plan form included in the Mach forecone.
The loading may then be calculated from the relationship given in
equation (4). .

Sinking Wing

The load distribution over the regions A, B, and C shown in
sketch (aa) are given by the following expressions:

(B2a)
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1 ( Ap = . [}- arc cos Moxotto , A Mo*l arc cos <— }—{-Q> jl (B2b)
@ Q.o B %2__1 b x-*'I"‘[O‘tc T[Mo \ to
/7,
1 @. = __h__ (B2c)
% \%o/ Mo2—1

Pitching Wing

A
For the case of the pitching wing the values of -(:iL- <§£o> in regions
regions A, B, and C are, respectively,
LAY % (pngto) (B3a)
a\ 9 A Mg
1 < é-l-)-> _ b [ ZotMoto o0 oo MoXotto | XotMoto ..o o <— 3{-9> +
2\ % 4 n Mo2—1 XotMoto Mo to
too—%,2 } (B3b)
1,< Ap>c 4 (
= F) = ——— (xg*Moto) (B3c)
q q /o J‘M?_i

LIFT AND PITCHING-MOMENT COEFFICIENTS

The 1ift and pitching-moment coefficients may be obtained by suitable
integrations of equations (B2) and (B3) and are given in the time
intervals indicated in sketch (aa) by the following expressionms:

Sinking wing

05t0_<_11

&l= &

(BLa)

Cza

Cmy, =~ -ﬁlg (2-t5%) (858)
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1 < < 1
1M ~ fo = Mo—1
e k[ 1 Moto-1 1 | 2
¢, =% [Mo arc cos o + o arc cos (to+Mg—toMe2) +
1 2 z |
== Jto"—~(1Mot Bhb
i JtoP~{(1Mst0) ] (BlD)
' __2[a1a o2 Mot oLl 1
cmat_._;[ﬁo-<l——g—>arccos tz + T
arc cos (totMg=toMoZ) + _Ml;< l*%ﬁo.) A/toz—(l—Moto)z }
(B5b)
1
< < »
g Sto S
% ~ MZ?_,_l (Blc)
Cp ' =~ ,__2__2 (BSc)
Pitching wing
0<to < ﬁg
czq' = %( 1+ %ﬁ (B6a)
oo Moto?
L <y <1
1+Mg Mo—1
v 220 1 /88 Moto—1 1
clq ﬂ [ T <l+ 5 > arc cos o + e

arc cos (t°+Mo-toM02) +'(—3——M-£P°—) /toe—(l—Moto)2 ] (B6D)
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3 _
cmqt =_._l.*_ l:MLo <1+—M212-‘—Q—> arc cos M°€21+A/_%I_gé:i

arc cos (to+Mo—toMoZ) +

(B-Mgto2tg" Mo®to?) Jr 2.-/1—Moto)2:|
[o) \

M,
(BTD)
_l_.. < o
T to &
c-Lq' = 22 (Bbe)
Mo=—1
cmq' S (B7c)
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TABULAR VALUES OF SUBSONIC INDICIAL
LIFT AND PITCHING MOMENT CURVES

TABLE I

NACA TN 2403

Mo = 0.8
2 2
to -2%-;01@ -3—ic7'q' %—gcma' ?chq'
0 0.478 0.318 -0.955 -0.637
1 465 .31k -.931 -.618
.2 RIS .312 -.898 -.601
.3 o .313 -.857 -.587
A 439 .317 -.205 -.579
.5 430 .325 -.7h5 -.575
.6 423 .336 -.689 -.530
.8 Rivels .359 -.639 -.600
1.0 Jho .383 -.621 -.620
1.5 479 .438 -.608 -.664
2.0 .515 L8l -.613 -. 694
2.5 5h2 .525 -.619 -.716
3.0 5Tk .558 -.625 -.727
3.5 -599 .586 -.635 -.735
k.o .619 .610 -.645 -.750
4.5 .637 .630 -.658 -.7h7
5.0 .652 645 -.671 -.755
6.0 .678 672 -.696 -.773
7.0 .701 .696 -.718 -.790
8.0 722 717 -.737 -.804
9 .74 .736 -.75h4 -.817
10 757 752 -.769 -.828
15 .818 .815 -.827 -.871
20 .858 .855 -.365 -.899
25 .885 .883 -.890 -.918
30 .904 .903 -.908 -.932
40 .929 .928 -.932 -.949
50 945 .ok -.947 -.961
60 1955 -955 -.957 -.968
80 .968 .968 -.969 -.977
100 .976 975 -.976 -.982
o 1.000 1.000 -1.000 -1.000
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(a) Lift on a sinking wing.

Figure |.- Variation of two-dimensional indicial lift and
pitching—moment coefficients with chord lengths
traveled for several Mach numbers.
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(b) Pitching moment (about leading
edge) on a sinking wing.

Figure |. - Continved.
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Figure |. — Continued.
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(d) Pitching moment (about leading edge) on a
wing pitching about its leading edge.

Figure /. - Concluded.
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(a) Sinking wing.
Figure 2.- Variation of two-dimensional load distribution

with percent chord for a Mach number egqual to
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Figure 2.~ Concluded.
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